Working TOWARDS the expected standard	Working AT the expected standard	Working at GREATER DEPTH
read and write numbers in numerals up to 100 (1NPV-1)		
partition a two-digit number into tens and ones to demonstrate an understanding of place value, though they may use structured resources to support them (2NPV-1 standard partitioning)	partition any two-digit number into different combinations of tens and ones, explaining their thinking verbally, in pictures or using apparatus (2NPV-1 standard \& non-standard partitioning)	
add and subtract two-digit numbers and ones, and two-digit numbers and tens, where no regrouping is required, explaining their method verbally, in pictures or using apparatus (eg $23+5$; $46+20 ; 16-5 ; 88-30)(2 A S-3)$	add and subtract any 2 two-digit numbers using an efficient strategy, explaining their method verbally, in pictures or using apparatus (eg $48+$ 35; 72-17) (2AS-4)	use reasoning about numbers and relationships to solve more complex problems and explain their thinking (eg $29+17=15+4+\square$; 'together Jack and Sam have £14. Jack has £2 more than Sam. How much money does Sam have? etc.) (2AS-2)
recall at least four of the six number bonds for 10 and reason about associated facts (eg $6+4=$ $\overline{10}$, therefore $4+6=10$ and $10-6=4)(1 N F-1 \&$ 2NF-1)	recall all number bonds to and within 10 ($2 \mathrm{NF}-$ 1) and use these to reason with and calculate bonds to and within 20, recognising other associated additive relationships (2AS-1) (eg If $7+3=10$, then $17+3=20$; if $7-3=4$, then $17-$ $3=14$; leading to if $14+3=17$, then $3+14=17$, $17-14=3$ and $17-3=14$)	
count in twos, fives and tens from $\mathbf{0}$ and use this to solve problems ($1 \mathrm{NF}-2$)	recall multiplication and division facts for 2, 5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary (2MD-1 \& 2MD-2)	recall and use multiplication and division facts for 2, 5 and 10 and make deductions outside known multiplication facts (2MD-1 \& 2MD-2)
		solve unfamiliar word problems that involve more than one step (eg 'which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?')
know the value of different coins (1NF-2)	use different coins to make the same amount (2AS-3)	
name some common 2-D and 3-D shapes from a group of shapes or from pictures of the shapes and describe some of their properties (eg triangles, rectangles, squares, circles, cuboids, cubes, pyramids and spheres) ($1 \mathrm{G}-1 \& 2 \mathrm{G}-1$)	name and describe properties of 2-D and 3-D shapes, including number of sides, vertices, edges, faces and lines of symmetry (2G-1)	describe similarities and differences of 2-D and 3D shapes, using their properties (eg that two different 2-D shapes both have only one line of symmetry; that a cube and a cuboid have the same number of edges, faces and vertices, but different dimensions). (2G-1)
	identify $1 / 4,1 / 3,1 / 2,2 / 4,3 / 4$, of a number or shape, and know that all parts must be equal parts of the whole	
	read the time on a clock to the nearest $\underline{15}$ minutes	read the time on a clock to the nearest $\underline{5}$ minutes
	read scales in divisions of ones, twos, fives and tens (2NPV-2)	read scales where not all numbers on the scale are given and estimate points in between (2NPV-2)

