Subtraction

Key language which should be used: take away, less than, the difference, subtract, minus, fewer, decrease, ' 7 take away 3, the difference is four

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (use various objects too) rather than crossing out children will physically remove the objects $4-3=1$	Children to draw the concrete resources they are using and cross out.	$\begin{aligned} & 4-3= \\ & =4-3 \end{aligned}$
Counting back (using number lines or number tracks) $6-2$	Children to represent what they see pictorially e.g. 6 \square ? 2	

Concrete	Pictorial	Abstract
Column method (using Dienes and no exchang $48-7$		Expanded and formal written method $\begin{array}{r} 1 \\ 40 \\ 40 \\ -07 \\ \hline 401 \\ \hline \end{array} \begin{array}{r} 48 \\ \hline \end{array}$
Column method (using Dienes and havin 45-26 1) 5 2) E 3) Subtract the ones, then the tens.	Represent the Dienes pictorially 	It's crucial that the children understand that when they have exchanged the 10 they still have $45.45=30+15$ $\begin{array}{rr} \top & 0 \\ 3040 & 5 \\ -206 \\ -20 & -26 \\ \hline 109 \\ \hline \end{array}$

Multiplication

Key language which should be used: double, times, multiplied by, the product of, groups of, lots of, 'is equal to' is the same as , array, multiple, repeated addition, commutative.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes) 3×4 or 3 lots of 4	Children to represent the practical resources in a picture e.g. $\begin{array}{lll} x X & X x & x x \\ x x & x x & x x \end{array}$ Use of a bar model tor a more structured method.	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$
Use number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g:	Abstract number line $3 \times 4=12$

Concrete	Pictorial	Abstract
Use arrays to illustrate commutativity (counters and other objects can also be used) $2 \times 5=5 \times 2$	Children to draw the arrays (draw round numicon)	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$
Partition to multiply (use numicon, Dienes, Cuisenaire rods) 4×15	Children to represent the concrete manipulatives in a picture	Children to be encouraged to show the steps they have taken $\begin{array}{r} 4 \times 15 \\ 10 \times 4=40 \\ 5 \times 4=20 \end{array}$ $40+20=60$ Childt $40+20=60$ ive to show partitioning steps in an expanded column method.

Concrete	Pictorial	Abstract
Formal column method with place value counters or base 10 (at the first stage no exchanging) 3×23. Make 23, 3 times. See how many ones, then how many tens.	Children to represent the counters in a pictorial way	Children to record what it is they are doing to show understanding $\begin{array}{rr} 3 \times 23 & 3 \times 20=60 \\ / \backslash & 3 \times 3=9 \\ 203 & 60+9=69 \\ & \\ 23 & \\ \times \quad 3 & \\ \hline 69 & \\ \hline \end{array}$
Formal column method with place value counters (children need this stage, initially, to understand how the column method works) 6×23 Step 1: get 6 lots of 23 Step 2: 6×3 is 18 . Can I make an exchange? Yes! Ten ones for one ten.... Step 3: 6×2 tens and my extraten is 13 tens. Can I make an exchange? Yes! Ten tens for one hundred... \qquad Step 4- what do I have I each column?	Children to represent the counters/Dienes, pictorially e.g. the image below.	The aim is to get to the formal method but the children need to understand how it works. $\begin{array}{r} 6 \times 23= \\ 23 \\ \times \quad 6 \\ \hline \frac{138}{11} \end{array}$

